Product categories

Have You Seen

B0505S-1WR3 MORNSUN Isolated DC - DC Converter

B0505S-1WR3 MORNSUN Isolated DC - DC Converter

Mornsun B0505S-1WR3 DC-DC Isolated ConverterMORNSUN B0505S 1WR3 1 watt, 5 Volts Isolated DC to DC Po..

Rs.106.20 (inc GST)
Rs.90.00 + GST

SKU: 2969 | DAE663
Stock: 31
XL1509-Adj E1 Buck DC to DC Converter IC (SOP8L Package)

XL1509-Adj E1 Buck DC to DC Converter IC (SOP8L Package)

XL1509-Adj E1 Buck DC to DC Converter IC (SOP8L Package)XL1509-Adj E1 Buck DC to DC Converter IC, Ad..

Rs.25.96 (inc GST)
Rs.22.00 + GST

SKU: 3657 | DAF397
Stock: 100

Wiegand Interface



Wiegand interface is a defacto industry standard used for interfacing card readers (smart card, proximity cards) to control panels. So basically the wiegand format is used for security card data encoding. Their is a lot of confusion regarding the 'Wiegand Format', when the term WIEGAND is used it basically means a 26-bit data format with a specific arrangement of binary data. This 26-bit data format is a widely used industry standard. Almost all access control systems accept the standard 26-bit data format. 26-bit originated with true Wiegand swipe card technology. There are other data format like the 34-bit & 37-bit format which use the same signaling standard as that of wiegand but have different data formatting standard.

 

wiegand_format
Figure : Wiegand Format

 

Wiegand Data Format Standard

From the above diagram you can see that the wiegand format consists of a parity bit, 8-bit facility code, 16-bit user ID, and another parity bit. A parity bit is used as a very simple quality check for the accuracy of the transmitted binary data. In the above example, the leading parity bit (even) is linked to the first 12 data bits. If the 12 data bits result in an odd number, the parity bit is set to one to make the 13-bit total come out even. The final 13 bits are similarly set to an odd total.

 

Wiegand Signaling Standard

For communication with the microcontroller the Wiegand interface uses two wires for carrying the card data to the controller these wires are called as DATA0 & DATA1. Normally both these lines are high i.e. when no data is being sent. A '0' is sent by making DATA0 line LOW & DATA1 line HIGH. Whereas a '1' is sent by making DATA1 line LOW & keeping DATA0 line HIGH. This signal is at TTL level & not an open collector signal so can be directly connected to the Microcontroller. A typical pulse width is 50 µs with an inter-spacing of 1ms but the actual timing values & output circuitry (open collector/TTL) are determined by the card reader manufacturer.

.

Written by Amol Shah

Amol Shah

Founder of DNA Technology an Electronic Engineer by choice. Started working on this website as an Hobby and now its a full time venture. Very passionate about Electronics and like to learn new stuff. Want to make DNA Technology one of the best Online Store for Electronics Components in India.
Follow Me Twitter | Facebook | Google Plus | Instagram